f2(a, f2(a, f2(a, f2(x, b)))) -> f2(f2(a, f2(a, f2(a, x))), b)
f2(f2(f2(a, x), b), b) -> f2(f2(a, f2(f2(x, b), b)), b)
↳ QTRS
↳ DependencyPairsProof
f2(a, f2(a, f2(a, f2(x, b)))) -> f2(f2(a, f2(a, f2(a, x))), b)
f2(f2(f2(a, x), b), b) -> f2(f2(a, f2(f2(x, b), b)), b)
F2(a, f2(a, f2(a, f2(x, b)))) -> F2(f2(a, f2(a, f2(a, x))), b)
F2(f2(f2(a, x), b), b) -> F2(f2(x, b), b)
F2(a, f2(a, f2(a, f2(x, b)))) -> F2(a, f2(a, f2(a, x)))
F2(f2(f2(a, x), b), b) -> F2(x, b)
F2(a, f2(a, f2(a, f2(x, b)))) -> F2(a, f2(a, x))
F2(f2(f2(a, x), b), b) -> F2(f2(a, f2(f2(x, b), b)), b)
F2(f2(f2(a, x), b), b) -> F2(a, f2(f2(x, b), b))
F2(a, f2(a, f2(a, f2(x, b)))) -> F2(a, x)
f2(a, f2(a, f2(a, f2(x, b)))) -> f2(f2(a, f2(a, f2(a, x))), b)
f2(f2(f2(a, x), b), b) -> f2(f2(a, f2(f2(x, b), b)), b)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
F2(a, f2(a, f2(a, f2(x, b)))) -> F2(f2(a, f2(a, f2(a, x))), b)
F2(f2(f2(a, x), b), b) -> F2(f2(x, b), b)
F2(a, f2(a, f2(a, f2(x, b)))) -> F2(a, f2(a, f2(a, x)))
F2(f2(f2(a, x), b), b) -> F2(x, b)
F2(a, f2(a, f2(a, f2(x, b)))) -> F2(a, f2(a, x))
F2(f2(f2(a, x), b), b) -> F2(f2(a, f2(f2(x, b), b)), b)
F2(f2(f2(a, x), b), b) -> F2(a, f2(f2(x, b), b))
F2(a, f2(a, f2(a, f2(x, b)))) -> F2(a, x)
f2(a, f2(a, f2(a, f2(x, b)))) -> f2(f2(a, f2(a, f2(a, x))), b)
f2(f2(f2(a, x), b), b) -> f2(f2(a, f2(f2(x, b), b)), b)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
F2(f2(f2(a, x), b), b) -> F2(f2(x, b), b)
F2(f2(f2(a, x), b), b) -> F2(x, b)
F2(f2(f2(a, x), b), b) -> F2(f2(a, f2(f2(x, b), b)), b)
f2(a, f2(a, f2(a, f2(x, b)))) -> f2(f2(a, f2(a, f2(a, x))), b)
f2(f2(f2(a, x), b), b) -> f2(f2(a, f2(f2(x, b), b)), b)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
F2(f2(f2(a, x), b), b) -> F2(f2(x, b), b)
F2(f2(f2(a, x), b), b) -> F2(x, b)
Used ordering: Polynomial Order [17,21] with Interpretation:
F2(f2(f2(a, x), b), b) -> F2(f2(a, f2(f2(x, b), b)), b)
POL( F2(x1, x2) ) = max{0, x1 - 2}
POL( f2(x1, x2) ) = x1 + x2
POL( a ) = 3
POL( b ) = 0
f2(a, f2(a, f2(a, f2(x, b)))) -> f2(f2(a, f2(a, f2(a, x))), b)
f2(f2(f2(a, x), b), b) -> f2(f2(a, f2(f2(x, b), b)), b)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
F2(f2(f2(a, x), b), b) -> F2(f2(a, f2(f2(x, b), b)), b)
f2(a, f2(a, f2(a, f2(x, b)))) -> f2(f2(a, f2(a, f2(a, x))), b)
f2(f2(f2(a, x), b), b) -> f2(f2(a, f2(f2(x, b), b)), b)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
F2(a, f2(a, f2(a, f2(x, b)))) -> F2(a, f2(a, f2(a, x)))
F2(a, f2(a, f2(a, f2(x, b)))) -> F2(a, f2(a, x))
F2(a, f2(a, f2(a, f2(x, b)))) -> F2(a, x)
f2(a, f2(a, f2(a, f2(x, b)))) -> f2(f2(a, f2(a, f2(a, x))), b)
f2(f2(f2(a, x), b), b) -> f2(f2(a, f2(f2(x, b), b)), b)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
F2(a, f2(a, f2(a, f2(x, b)))) -> F2(a, f2(a, x))
F2(a, f2(a, f2(a, f2(x, b)))) -> F2(a, x)
Used ordering: Polynomial Order [17,21] with Interpretation:
F2(a, f2(a, f2(a, f2(x, b)))) -> F2(a, f2(a, f2(a, x)))
POL( F2(x1, x2) ) = max{0, x2 - 3}
POL( f2(x1, x2) ) = max{0, x1 + x2 - 1}
POL( a ) = 3
POL( b ) = 1
f2(a, f2(a, f2(a, f2(x, b)))) -> f2(f2(a, f2(a, f2(a, x))), b)
f2(f2(f2(a, x), b), b) -> f2(f2(a, f2(f2(x, b), b)), b)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
F2(a, f2(a, f2(a, f2(x, b)))) -> F2(a, f2(a, f2(a, x)))
f2(a, f2(a, f2(a, f2(x, b)))) -> f2(f2(a, f2(a, f2(a, x))), b)
f2(f2(f2(a, x), b), b) -> f2(f2(a, f2(f2(x, b), b)), b)